一、计算步骤
1. 计算结构的几何尺寸; 2. 计算作用在结构上的荷载; 3. 计算拱顶变位;
4. 计算侧墙的弹性特征值及换算长度=h,判别侧墙所属类型5. 计算墙顶的单位变位 6. 计算墙顶力Mh,Hh
7. 计算拱顶未知力X1P,X2P,X1,X2 8. 考虑弹性抗力时,计算j 9. 计算拱圈截面内力 10.计算侧墙截面内力 11.绘制内力图,校核计算结果 12.计算拱圈、侧墙截面的内力和偏心距 13.计算拱圈和侧墙各截面的安全系数 14.计算配筋量 15.绘制结构施工图 16.计算工程量 二、计算实例 (一)设计基本资料 结构断面如图所示。
1、岩石特征
软质石灰岩,隧道埋深H=50m,岩石坚硬系数fi2,内摩擦角=650,容重=24kN/m3,侧向岩层地基系数K1=2.5×105kPa/m,基底岩层地基系数K2=3.125×105kPa/m。 2被覆材料
采用C20砼,弹性模量E=2.55×104MPa,容重=25 kN/m3,砼轴心抗压强度设计值fc10MPa,弯曲抗压强度设计值fcm11MPa,抗拉强度设计值ft1.1MPa。钢筋采用25MnSi钢:强度设计值fy340MPa,弹性模量Es200GPa。
3结构尺寸
净跨l012m,拱顶砼厚度(预先确定)d00.7m,拱脚厚度dj1.0m,内拱矢高f03.75m,侧墙厚度dg1.0m,内墙高h011.25m,底板厚度dB0.12m,墙基埋深dm0.2m (二)结构几何尺寸计算 1拱圈内圆几何尺寸
内圆净跨:l012m,内圆矢高f03.75m
2l04f02l022内圆半径计算:(R0f0)R0,从而有:R06.675m
8f2022拱圈轴线圆的几何尺寸 拱脚截面与拱顶截面厚度之差:
djd010.70.3m
轴线圆与内圆的圆心距:
2R0(R00.5)26.6752(6.6750.50.3)m00.275m
2(f00.5)2(3.750.50.3)2轴线圆半径:
RR0m0d07.30m 2sinjl0/20.88235
Rdj/20 j61.92715cosj0.47059 dhdjsinj0.88235m
dvdjcosj0.47059m
计算跨度:ll0dh120.8823512.88235m 计算矢高:ff03拱圈外圆几何尺寸
外圆跨度:l1l02dh13.7647m 外圆矢高:f1f0d0dv3.97941m
l124f12外圆半径:R17.94118m
8f1d0dv3.864705m 22外圆与轴线圆的圆心距:
m1R1R0d00.29118m 24校核公式
外圆与轴线的圆心距:mm0m10.56618m
2djR12(m1sinj)2R0(m0sinj)2mcosj1.0m
5侧墙的几何尺寸
拱脚中心到侧墙中心线的垂直距离:
eh(dgdh)/20.058825m
侧墙的计算长度(从拱脚中心算起):
hyh0dBdmdv/211.80795m
结构总高:hkhydv/2f116.0226m (三)计算拱顶单位变位
采用分块总和法计算变位,将半拱轴线长分10等分,计算过程列于表1,故拱顶单位变位:
0j1s61.92715115R7.33.14159261.03138103E103E1801032.55104s10ni111.03138105742.85277.661634103 3Ei0Ii122122s10niyi1.03138105737.09597.602259103 3Ei0Iis10ni210ni(yicos2i)16.0392103 3Ei0Iii0Fi校核计算:
sssnn[(1y)2cos2]38.90534910-33EIF1121222(7.5827.344815.229)10738.90535210-3
判别:1121222-ss31090 说明单位变位计算结果正确。 表1 变截面圆拱拱顶单位变位计算(见附图) (四)计算拱顶载变位 1计算荷载
(1)岩石坚固系数fi2,隧道半跨度:
h1al1/213.76473.44m(考虑到有一定的间隙) fifi4隧道埋深H=50m>(2-2.5)h1,属于深埋 因此围岩竖直压力:
q地h1240003.482560Pa(采用均布荷载模式) q地f1h124(3.979413.44)12.945kpa
(2)自重计算
q自hd0250.717.5kPa
q自h(djcosjd0)25000(10.7)35.6kPa
0.47059因此:qq地q自100.06kPa
qq自35.6kPa
在实际设计中,外载还应包括超挖回填引起的拱顶荷载,一般取30cm回填高度,可忽略不计。 2计算载变位
先分别计算在均布荷载和三角形荷载作用下的载变位,然后叠加,计算过程列于表2。
表2 变截面圆拱拱顶载变位计算(见附图) 2计算载变位
先分别计算在均布荷载作用下河三角形荷载作用下的载变位,然后叠加,计算过程列于表2. 在均布荷载q作用下的载变位:
'1ps10'niMpi4.764543Ei0Ii2p'10s10'ni'ni(MpiyiNpicosi)-9.40586 3Ei0IiFi0i在三角荷载q作用下的载变位:
''1p10s10''nis10''ni''''niM-0.828152p(MpiyiNpicosi)-1.86707 pi3Ei0Ii3Ei0IiFii0拱顶总载变位:
' 1p'1p'1p5.59269 2p'2p''2p11.27293校核计算:
'sps'n'n[Mp(1y)Npcos]14.1704 3EIF'1p'2p'sp0,可见计算正确。
''sps''n''n[Mp(1y)Npcos]2.69522 3EIF''''''1p2psp0 , 满足要求!
(五)在荷载作用下多余未知力的计算 1判别侧墙类型
K414EI42.5108142.5510101.03120.414
侧墙特征长度:hy0.41411.807954.89,故侧墙属于长梁 2计算墙顶单位变位
nK21.25 K14340.414310.114105 5K12.5102220.41425 u120.137105K12.510u2220.4145 0.331105K12.5103由外载引起的墙顶弯矩与水平力
1l1lMhpql(eh)lq(eh)21.1233q7.10424q
2446Hhp0
4计算多余未知力
a111117.66278103
a12122f17.6059103 a2222u22f2f2116.07013103a101pMhp1Hhp247.64089q23.2707q)103
a202pf(Mhp1Hhp2)Mhpu1Hhpu2(94.1242q52.487q)103X1a22a10a12a200.76113q0.3867q 2a12a11a22a11a20a12a105.49685q3.4491q 2a12a11a22X2(六)弹性抗力作用下多余未知力的计算 1计算j1时引起的墙顶截面内力及变位 通过积分可得到:
MjR222[cossinj2(sinjcosj)]0.801678j23(12cosj)R22[cossinj2(sinjcosj)]0.1102 j23(12cosj)NjQjR[4cosjsinj2(sinjcosj)]1.10267
3(12cos2j)因此墙顶内力(要考虑偏心距):
MhMj(NjsinjQjcosj)eh1.41782 HhNjcosjQjsinj0.92108
VhNjsinjQjcosj0.61614
墙顶变位:
Mh1Hh20.2878210uMhu1Hhu20.499105
52计算j1时的拱顶载变位
采用分块总和法计算,将弹性抗力所分布拱轴线长对应圆心角
j450四等分
061.927154504.23180
414R34ni[cos2isin2i2(sinicosi)]30.139210E(12cos2j)3i0[d0m(1cosi)]324R44ni[cos2isin2i2(sinicosi)](1cosi)23E(12cosj)3i0[d0m(1cosi)]R24nicosi[cos2isin2i2(sinicosi)]d0m(1cosi)3E(12cos2j)3i00.421610-33计算j1时的多余未知力
a111117.66278103 a12122f17.6059103
a2222u22f2f2116.07013103
110.1421103
22fu0.4377103
X1a22a1a12a20.016 2a12a11a22a11a2a12a10.035 2a12a11a22X2
4计算弹性抗力
根据hK1u0及jhsinju0K1sinj
u0(X1X1j)u1(X2X2j)u2(X2X2j)fu1Mhpu1Hhpu2uj1.9402q1051.9416q1050.471j105从而可求得 j2.099q2.101q
5.在弹性抗力作用下多余未知力计算 X1X1J0.0336q0.0336q X2X2J0.0735q0.0735q
(七)计算弹性抗力及外载共同作用下的多余未知力 X1X1X1J0.72753q0.4203q
X2X2J5.57035 X2q3.5226q
将q=100.06kpa及q=35.6kpa代入得
57.83397103N•m X168.2774104N X2(八)计算拱圈内力 1.拱圈任一截面的内力
X2yMpM MX1cosNpN NX2各截面的内力计算见表3 (九)计算侧墙内力
侧墙为长梁,其任一截面的弯矩与轴力为
Mu0K1K11MH2 304h1h23224NVhdxh
现将侧墙分为6等分:
hyhy61.96799
侧墙各截面的内力计算见表4
附表
表1 变截面圆拱拱顶单位变位计算 截面号 0 1 2 3 4 5 6 7 8 9 10 Fd1 0 6.192715 12.38543 18.57815 24.77086 30.96358 37.15629 43.34901 49.54172 55.73444 61.92715 sin 化为弧度 0 0 0.108083 0.107873 0.216167 0.214487 0.32425 0.318598 0.432333 0.41899 0.540416 0.514493 0.6485 0.603991 0.756583 0.686441 0.864666 0.760879 0.972749 0.826437 1.080833 0.88235 cos 1 0.994164688 0.976726854 0.947890007 0.907990693 0.857494561 0.796990932 0.727185921 0.648894197 0.563029472 0.470593843 yR(1cos) d0m(1cos)0 0.7 0.04259778 0.703303837 0.16989397 0.71317679 0.38040295 0.729503636 0.67166794 0.752093829 1.04028971 0.78068373 1.4819662 0.814939674 1.99154278 0.854461875 2.56307236 0.898789084 3.18988485 0.947403973 3.86466495 1 d 0.343 0.347879599 0.362736788 0.388224002 0.425418211 0.475801038 0.541223175 0.62384697 0.726061431 0.850365447 1 3112 Id334.98542274 34.49469313 33.08183898 30.90998996 28.20753719 25.22062595 22.17199958 19.23548656 16.52752714 14.11157995 12 n 1 4 2 4 2 4 2 4 2 4 1 n F1.428571429 5.687442311 2.804353742 5.483180349 2.659242666 5.123713801 2.454169386 4.681308922 ncos I34.98542274 137.1736233 64.62384099 117.1970824 51.22436248 86.50619827 35.3417652 55.95110002 n I34.9854227 137.978773 66.163678 123.63996 56.4150744 100.882504 44.3439992 76.9419462 ny I0 5.87758911 11.24080986 47.03300514 37.8921969 104.9470304 65.71630793 153.2331773 n2y I0 0.250372236 1.909745802 17.89149378 25.4509739 109.1753156 97.38934714 305.1704274 ncos2 F1.428571429 5.621259972 2.67534042 4.926612682 2.1924049 3.767450984 1.558875006 2.475473178 n(1y) I34.98542274 143.8563616 77.40448782 170.672965 94.30727127 205.8295342 110.0603071 230.1751235 n(1y)2 I34.98542274 149.984323 90.55504348 235.5974639 157.6504421 419.9518803 273.1659622 688.5787282 2.225216167 4.222063779 1 21.4492329 31.78094166 5.647126113 Σ 33.0550543 84.7224961 56.4463198 180.0572605 12 46.37597938 742.852731 737.0958526 217.1498883 574.3619276 179.2276219 1527.977114 0.936957705 1.338403451 0.221458565 27.14280829 117.7775504 236.5035803 58.37597938 419.6499348 990.9227683 283.9795807 3745.02155 表2
变截面圆拱拱顶载变位计算 垂直均布载q 截面号 0 1 2 3 4 5 6 7 8 9 10 1MPqx2 qxsin NPxRsin 2x² x³ 0.000000 0.000000 0.000000 0.000000 0.000000 0.7874725 0.620113 0.4883219 -31.02425274 8.49979527 1.5657548 2.451588 3.8385856 -122.652947 33.6035471 2.3257637 5.4091766 12.580466 -270.6211068 74.142769 3.0586295 9.3552141 28.614133 -468.0413627 128.23051 3.7557991 14.106027 52.979404 -705.7245338 193.349187 4.4091363 19.440483 85.715738 -972.6073496 266.467767 5.0110161 25.110282 125.82803 -1256.267404 344.18285 5.5544142 30.851517 171.3621 -1543.501374 422.877089 6.0329888 36.396953 219.58241 -1820.939582 498.887557 6.4411546 41.488473 267.23367 -2075.668308 568.676249 Σ n I0.000000 -4280.688312 -8115.170088 -33459.58278 -26404.58829 -71195.25797 -43129.29949 -96659.65906 -51020.5217 -102785.338 -24908.0197 -461958.1254 MPny I0.000000 -182.3478101 -1378.718456 -12728.12391 -17735.11547 -74063.69413 -63916.16408 -192501.8459 -130769.2891 -327873.3926 -96261.15066 -917409.8421 MPncos F0.000000 48.06000406 92.04305949 385.3534726 309.6212344 849.4906202 521.1978273 1171.661043 610.6048545 1185.92873 267.6155412 5441.576388 NP n(1y) MPI0.000000 -4463.036122 -9493.888544 -46187.70668 -44139.70376 -145258.9521 -107045.4636 -289161.5049 -181789.8108 -430658.7306 -121169.1704 -1379367.967 2MPqx3 30.000000 -0.899642337 -7.071879821 -23.17716909 -52.71621773 -97.6046961 -157.9153004 -231.8147295 -315.7027906 -404.5397435 -492.3283243 垂直均布载q x2qsin NPl0.000000 0.184858014 1.453125991 4.762432004 10.83209953 20.05575947 32.4483494 47.63316359 64.87043643 83.12460482 101.1633543 n I0.000000 -124.13155 -467.90158 -2865.6243 -2973.9893 -9846.6061 -7002.5959 -17836.276 -10435.573 -22834.78 -5907.9399 -80295.418 MPny I0.000000 -5.287728002 -79.4936564 -1090.091913 -1997.533302 -10243.32301 -10377.61051 -35521.70754 -26747.12845 -72840.31796 -22832.20821 -181734.7023 MPncos F0.000000 1.045234225 3.980239392 24.75251108 26.15483647 88.11611668 63.46737317 162.1519552 93.66836004 197.5993503 47.60685164 708.5428282 NPn(1y) MPI0.000000 -129.4192733 -547.3952354 -3955.716168 -4971.522646 -20089.92914 -17380.20646 -53357.98398 -37182.70133 -95675.0977 -28740.1481 -262030.12
表3 拱圈各截面的M N值 截面号 0 1 2 3 4 5 6 7 8 9 10 X1 57.83397 57.83397 57.83397 57.83397 57.83397 57.83397 57.83397 57.83397 57.83397 57.83397 57.83397 y•X20 29.084655 115.99918 259.72924 465.5974 750.2828 1050.848 1389.774 1754.9912 2121.652 2464.693 M 0 0 0 0 0 0 0 0 0 -9.00303 -16.80556 NP NPNP0 8.684653287 35.05667312 78.90520099 139.0626099 213.4049468 298.9161164 391.8160141 487.7475251 582.0121615 669.8396031 NX2cosNPN 682.774 687.4744539 701.9403738 726.0998528 759.0150472 798.8799379 843.0808027 888.319654 930.7956115 967.2031565 1001.230994 X2yMPM N MP MX1MPMP0 57.83397 0 -31.92389508 54.9947301 0 -129.7248268 44.108328 0 -293.7982759 23.7649361 0 -520.7575805 2.67378952 0 -803.3292299 4.78754006 0 -1130.52265 -21.84068 0 -1488.082134 -40.474164 0 -1859.204164 -46.378994 0 -2225.479325 -54.996385 0.76911 -2567.996633 -62.275223 10.08215 nnyM M II2023.345889 0 7588.10536 323.236427 2918.369209 495.813328 2938.29575 1117.73636 150.8420348 101.315759 482.9790286 502.438113 -968.5030939 -1435.2888 -3114.160925 -6201.9847 -1533.060178 -3929.3442 -3104.343553 -9902.4985 -747.3026701 -2888.0744 6634.566851 -21816.651 cosX21682.774 678.7898007 666.8837007 647.1946518 619.9524374 585.4749911 544.1646863 496.50364 443.0480863 384.421885 321.3092404 ncosN F975.3914286 3887.155395 1922.676179 3773.869031 1832.693134 3509.924315 1649.024524 3024.001723 1344.003575 2299.183446 471.1731407 24689.09589 表4 侧墙各截面M 、N值 2 1 截面 X X 11 12 13 14 15 16 17 0 1.96799 3.93598 5.90397 7.87196 9.83995 11.80794 12 20.0000 815.2599 1269.5308 -332.7357 -7326.7328 -20877.4925 -27280.2026 Hh3 0.0000 0.6606 2.4484 3.6717 -1.5218 -23.5890 -65.3461 4 0.0000 0.3598 2.7880 8.1102 11.3767 -6.0891 -76.9812 Mh1 -73.7794 -68.3666 11.4643 328.2651 954.7908 1292.8884 -857.9870 0.00000 0.81475 1.62950 2.44424 3.25899 4.07374 4.88849 K13 220.0000 -621.7281 -2304.4615 -3455.8482 1432.3220 22202.0916 61504.1317 uo1.0000 0.9266 -0.1554 -4.4493 -12.9412 -17.5237 11.6291 K14 430.0000 155.8861 1207.9031 3513.7676 4928.9835 -2638.1044 -33352.3151 0.0000 1.6056 2.5002 -0.6553 -14.4293 -41.1162 -53.7257 截面 11 12 13 14 15 16 17 0Mx(KN•m) -73.7794 281.0512 184.4366 53.4489 -10.6365 -20.6169 13.6270 dhx 0 49.19975 98.3995 147.59925 196.799 245.99875 295.1985 Nx(KN) 934.6459 983.84565 1082.2452 1229.8444 1426.6434 1672.6422 1967.8407
因篇幅问题不能全部显示,请点此查看更多更全内容