DJDK-1 型 电力电子技术及电机控制
实验装置简介
1-1 控制屏介绍及操作说明
一、特点
(1)实验装置采用挂件结构,可根据不同实验内容进行自由组合,故结构紧凑、使用方便、功能齐全、综合性能好,能在一套装置上完成《电力电子技术》、《自动控制系统》、《直流调速系统》、《交流调速系统》、《电机控制》、《控制理论》等课程所开设的主要实验。
(2)实验装置占地面积小,节约实验室用地,无需设置电源控制屏、电缆沟、水泥墩等,可减少基建投资。实验装置只需三相四线的电源即可投入使用,实验室建设周期短、见效快。
(3)实验机组容量小,耗电小,配置齐全。装置使用的电机经过特殊设计,其参数特性能模拟3KW左右的通用实验机组。
(4)装置布局合理,外形美观,面板示意图明确、清晰、直观。实验连接线采用强、弱电分开的手枪式插头,两者不能互插,避免强电接入弱电设备,造成设备损坏。电路连接方式安全、可靠、迅速、简便。除电源控制屏、挂件外,还设置有实验桌,桌面上可放置机组、示波器等实验仪器,操作舒适、方便。电机采用导轨式安装,更换机组简捷、方便。实验台底部安装有轮子和不锈钢固定调节机构,便于移动和固定。
(5)控制屏供电采用三相隔离变压器隔离,设有电压型漏电保护装置和电流型漏电保护装置,切实保护操作者的安全,为开放性的实验室创造了安全条件。
(6)挂件面板分为三种接线孔,强电、弱电及波形观测孔,三者有明显的区别,不能互插。
(7)实验线路选择典型线路,完全配合教学内容,满足教学大纲要求。 二、技术参数
(1)输入电压 三相四线制 380V±10% 50Hz
(2)工作环境 环境温度范围为-5—40℃,相对湿度<75%,海拔<1000m (3)装置容量:<1.5kVA (4)电机输出功率:<200W
(5)外形尺寸:长×宽×高=1870㎜×730㎜×1600㎜
图1-1 DJDK-1 电力电子技术及电机控制实验装置外形图
1-2 DJK01电源控制屏
电源控制屏主要为实验提供各种电源,如三相交流电源、直流励磁电源。
同时为实验提供所需的仪表,如直流电压、电流表,交流电压、电流表。屏上还设有定时器兼报警记录仪,供教师考核学生实验之用。在控制屏正面的大凹槽内,设有两根不锈钢管,可挂置实验所需挂件,凹槽底部设有12芯、10芯、4芯、3芯等插座,有源挂件的电源从这些插座提供。在控制屏两边设有单相三极220V电源插座及三相四极380V电源插座,此外还设有供实验台照明用的40W日光灯。
1、三相电网电压指示
三相电网电压指示主要用于检测输入的电网电压是否有缺相,操作交流电压表下面的切换开关,观测三相电网各线间电压是否平衡。
图1-2 主控制屏面板图
2、定时器兼报警记录仪
平时作为时钟使用,具有设定实验时间、定时报警、切断电源等功能,它还可以自动记录由于接线操作错误所导致的告警次数。(具体操作方法详见DJDK-1型电力电子技术及电机控制实验装置使用说明书)
3、控制部分
它的主要功能是控制电源控制屏的各项功能,它由电源总开关、启动按钮及停止按钮组成。当打开电源总开关时,红灯亮;当按下启动按钮后,红灯灭,绿灯亮,此时控制屏的三相主电路及励磁电源都有输出。
4、三相主电路输出
三相主电路输出可提供三相交流200V/3A或240V/3A电源。输出的电压大小由“调速电源选择开关”控制,当开关置于“直流调速”侧时,A、B、C输出线电压为200V,可完成电力电子实验以及直流调速实验;当开关置于“交流调速”侧时,A、B、C输出线电压为240V,可完成交流电机调压调速及串级调速等实验。在A、B、C三相处装有黄、绿、红发光二极管,用以指示输出电压。同时在主电源输出回路中还装有电流互感器,电流互感器可测定输出电流的大小,供电流反馈和过流保护使用,面板上的TA1、TA2、TA3三处观测点用于观测三路输出电压信号。
5、励磁电源
在按下启动按钮后将励磁电源开关拨向“开”,则励磁电源输出为220V的直流电压,并有发光二极管指示输出是否正常,励磁电源由0.5A熔丝做短路保护。励磁电源仅为直流电机提供励磁电流,由于励磁电源的容量有限,一般不要作为大电流的直流电源使用。
6、面板仪表
面板下部设置有±300V数字式直流电压表和±5A数字式直流电流表,精
度为0.5级,能为可逆调速系统提供电压及电流指示。面板上部设置有500V真有效值交流电压表和5A真有效值交流电流表,精度为0.5级,供交流调速系统实验时使用。
1-3 DJK19挂件(半桥型开关稳压电源)
该挂件主要完成半桥型开关稳压电源的性能研究,操作说明详见半桥型开关稳压电源实验内容,面板图如下:
图1-3 DJK19面板图
1-4 DJK20挂件(直流斩波实验)
该挂件主要依据西安交通大学王兆安、黄俊编写的电力电子技术(第四版)教材中的有关斩波电路的六种典型的电路实验。通过利用主电路元器件的自由组合,可构成降压斩波电路(Buck Chopper)、升压斩波电路(Boost Chopper)、升降压斩波电路(Boost-Buck Chopper)、Cuk斩波电路、Sepic斩波电路、Zeta斩波电路六种电路实验。面板图见图1-53。
1.主电路接线图
包括六种电路实验详细接线图,在实验过程中按原器件标号进行接线。 2.主电路原器件
实验中所用的器件,包括电容、电感、IGBT等。 3.整流电路
输入交流电源得到直流电源,要注意输出的直流电源不能超过50V。直流侧有2A熔丝保护。
4.控制电路及脉宽调节电位器
PWM发生器由SG3525构成,具体原理见实验部分。调节“PWM脉宽调节电位器”改变输出的触发信号脉宽。
图1-53 DJK20面板图
直流斩波电路的性能研究(六种典型线路)
一、实验目的
(1)熟悉直流斩波电路的工作原理。
(2)熟悉各种直流斩波电路的组成及其工作特点。
(3)了解PWM控制与驱动电路的原理及其常用的集成芯片。 二、实验所需挂件及附件
序号 1 型 号 DJK01 电源控制屏 备 注 该控制屏包含“三相电源输出”,“励磁电源”等几个模块。 2 3 4 5 6 DJK09 单相调压与可调负载 DJK20 直流斩波电路 D42 三相可调电阻 慢扫描示波器 万用表 自备 自备 三、实验线路及原理 1、主电路
①、降压斩波电路(Buck Chopper)
降压斩波电路(Buck Chopper)的原理图及工作波形如图4-14所示。图中V为全控型器件,选用IGBT。D为续流二极管。由图4-14b中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向负载供电,UD=Ui。当V处于断态时,负载电流经二极管D续流,电压UD近似为零,至一个周期T结束,再驱
动V导通,重复上一周期的过程。负载电压的平均值为:
tontUoUionUiaUitontoffT式中ton为V处于通态的时间,toff为V处于断态的时间,T为开关周期,α为导通占空比,简称占空比或导通比(α=ton/T)。由此可知,输出到负载的电压平均值UO最大为Ui,若减小占空比α,则UO随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。
+UiCE+L1UD-C1+RUo-VGD-
(a)电路图
UGEUDtonTUiUOtoff
ttt(b)波形图
图4-14 降压斩波电路的原理图及波形
②、升压斩波电路(Boost Chopper)
升压斩波电路(Boost Chopper)的原理图及工作波形如图4-15所示。电路也使用一个全控型器件V。由图4-15b中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向电感L1充电,充电电流基本恒定为I1,同时电容C1上的电压向负载供电,因C1值很大,基本保持输出电压UO为恒值。设V处于通态的时间为ton,此阶段电感L1上积蓄的能量为UiI1ton。当V处于断态时Ui和L1共同向电容C1充电,并向负载提供能量。设V处于断态的时间为toff,
则在此期间电感L1释放的能量为(UO-Ui) I1ton。当电路工作于稳态时,一个周期T内电感L1积蓄的能量与释放的能量相等,即:
UiI1ton=(UO-Ui) I1toff
Uotontofftoff
UiTUitoff上式中的T/toff≥1,输出电压高于电源电压,故称该电路为升压斩波电路。
+UiI1L1GC-UDV+DC1+RUo--E
(a) 电路图
UGEtUDtUOt
(b)波形图
图4-15 升压斩波电路的原理图及波形
③、升降压斩波电路(Boost-Buck Chopper)
升降压斩波电路(Boost-Buck Chopper)的原理图及工作波形如图4-16所示。电路的基本工作原理是:当可控开关V处于通态时,电源Ui经V向电感L1供电使其贮存能量,同时C1维持输出电压UO基本恒定并向负载供电。此后,V关断,电感L1中贮存的能量向负载释放。可见,负载电压为上负下正,与电源电压极性相反。输出电压为:
Uotont aUionUiUitoffTton1a
若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压。
+Ui-CEG-L1VUD+DC1-RUo+
(a) 电路图
UGEtUDtUOt
(b) 波形图
图4-16 升降压斩波电路的原理图及波形
④、Cuk斩波电路
Cuk斩波电路的原理图如图4-17所示。电路的基本工作原理是:当可控开关V处于通态时,Ui—L1—V回路和负载R—L2—C2—V回路分别流过电流。当V处于断态时,Ui—L1—C2—D回路和负载R—L2—D回路分别流过电流,输出电压的极性与电源电压极性相反。输出电压为:
ttaUoonUionUiUitoffTt1a on若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压。
+Ui-L1GEC-C2VDL2C1RUo+
图4-17Cuk斩波电路原理图
⑤、Sepic斩波电路
Sepic斩波电路的原理图如图4-18所示。电路的基本工作原理是:可控开关V处于通态时,Ui—L1—V回路和C2—V—L2回路同时导电,L1和L2贮能。当V处于断态时,Ui—L1—C2—D—R回路及L2—D—R回路同时导电,此阶段Ui和L1既向R供电,同时也向C2充电,C2贮存的能量在V处于通态时向L2转移。输出电压为:
tont onaUoUiUiUitoffT1a ton若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压。
+Ui-L1GEC+C2VL2DC1RUo-
图4-18 Sepic斩波电路原理图
⑥、Zeta斩波电路
Zeta斩波电路的原理图如图4-19所示。电路的基本工作原理是:当可控开关V处于通态时,电源Ui经开关V向电感L1贮能。当V处于断态后,L1经D与C2构成振荡回路,其贮存的能量转至C2,至振荡回路电流过零,L1上的能量全部转移至C2上之后,D关断,C2经L2向负载R供电。输出电压为:
UoaUi 1a
+Ui-CEG+C2L2DC1RUo-VL1
图4-19 Zeta斩波电路原理图
若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压。
2、控制与驱动电路
控制电路以SG3525为核心构成,SG3525为美国Silicon General公司生产的专用PWM控制集成电路,其内部电路结构及各引脚功能如图4-20所示,它采用恒频脉宽调制控制方案,内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。调节Ur的大小,在A、B两端可输出两个幅度相等、频率相等、相位相差、占空比可调的矩形波(即PWM信号)。它适用于各开关电源、斩波器的控制。详细的工作原理与性能指标可参阅相关的资料。
图4-20 SG3525芯片的内部结构与所需的外部组件
四、实验内容
(1)控制与驱动电路的测试 (2)六种直流斩波器的测试 五、思考题
(1)直流斩波电路的工作原理是什么?有哪些结构形式和主要元器件? (2)为什么在主电路工作时不能用示波器的双踪探头同时对两处波形进行观测?
六、实验方法
1、控制与驱动电路的测试
(1)启动实验装置电源,开启DJK20控制电路电源开关。
(2)调节PWM脉宽调节电位器改变Ur,用双踪示波器分别观测SG3525的第11脚与第14脚的波形,观测输出PWM信号的变化情况,并填入下表。
Ur(V) 11(A)占空比(%) 14(B)占空比(%) PWM占空比(%) 1.4 1.6 1.8 2.0 2.2 2.4 2.5 (3)用示波器分别观测A、B和PWM信号的波形,记录其波形、频率和幅值,并填入下表。 观测点 波形类型 幅值A (V) 频率f (Hz) A(11脚) B(14脚) PWM (4)用双踪示波器的两个探头同时观测11脚和14脚的输出波形,调节PWM脉宽调节电位器,观测两路输出的PWM信号,测出两路信号的相位差,
并测出两路PWM信号之间最小的“死区”时间。
2、直流斩波器的测试(使用一个探头观测波形)
斩波电路的输入直流电压Ui由三相调压器输出的单相交流电经DJK20挂箱上的单相桥式整流及电容滤波后得到。接通交流电源,观测Ui波形,记录其平均值(注:本装置限定直流输出最大值为50V,输入交流电压的大小由调压器调节输出)。
按下列实验步骤依次对六种典型的直流斩波电路进行测试。
(1)切断电源,根据DJK20上的主电路图,利用面板上的元器件连接好相应的斩波实验线路,并接上电阻负载,负载电流最大值限制在200mA以内。将控制与驱动电路的输出“V-G”、“V-E”分别接至V的G和E端。
(2)检查接线正确后,接通主电路和控制电路的电源。
(3)用示波器观测PWM信号的波形、UGE的电压波形、UCE的电压波形及输出电压Uo和二极管两端电压UD的波形,注意各波形间的相位关系。
(4)调节PWM脉宽调节电位器改变Ur,观测在不同占空比(α)时,记录Ui、UO和α的数值于下表中,从而画出UO=f(α)的关系曲线。
Ur(V) 占空比α(%) Ui(V) Uo(V) 七、实验报告
(1)分析图4-20中产生PWM信号的工作原理。
(2)整理各组实验数据绘制各直流斩波电路的Ui/UO-α曲线,并作比较与分析。
(3)讨论、分析实验中出现的各种现象。 八、注意事项
1.4 1.6 1.8 2.0 2.2 2.4 2.5
(1)在主电路通电后,不能用示波器的两个探头同时观测主电路元器件之间的波形,否则会造成短路。
(2)用示波器两探头同时观测两处波形时,要注意共地问题,否则会造成短路,在观测高压时应衰减10倍,在做直流斩波器测试实验时,最好使用一个探头。
半桥型开关稳压电源的性能研究
一、实验目的
(1)熟悉典型开关电源主电路的结构,元器件和工作原理。 (2)了解PWM控制与驱动电路的原理和常用的集成电路。
(3)了解反馈控制对电源稳压性能的影响。 二、实验所需挂件及附件 序号 型 号 备 注 该控制屏包含“三相电1 DJK01 电源控制屏 源输出”,“励磁电源”等几个模块。
2 3 4 5 DJK09 单相调压与可调负载 DJK19 半桥型开关稳压电源 双踪示波器 万用表 自备 自备 三、原理说明
(1)半桥型开关直流稳压电源的电路结构原理和各元器件均已画在DJK19挂箱的面板上,并有相应的输入与输出接口和必要的测试点。
主电路的结构框图如4-9所示,原理线路如图4-10所示:
图4-9 线路结构框图
(2)逆变电路采用的电力电子器件为美国IR公司生产的全控型电力MOSFET管,其型号为IRFP450,主要参数为:额定电流16A,额定耐压500V,通态电阻0.4Ω。两只MOSFET管与两只电容C1、C2组成一个逆变桥,在两路PWM信号的控制下实现了逆变,将直流电压变换为脉宽可调的交流电压,并在桥臂两端输出开关频率约为26KHz、占空比可调的矩形脉冲电压。然后通过降压、整流、滤波后获得可调的直流电源电压输出。该电源在开环时,它的负载特性较差,只有加入反馈,构成闭环控制后,当外加电源电压或负载变化时,均能自动控制PWM输出信号的占空比,以维持电源的输出直流电压在一定的范围内保持不变,达到了稳压的效果。 U1N4007*4主电路VD1 VD3 C1 VD5G1C4 0.1uF/400VR3100V1 R510K4 S1L200uHR1 T31000uF/50VC4NU5T2VD2 VD4 C3Uf2K+ DC 0~15V0.1uF/400VC2 G2R4100V2 VD6R21K-LoadDCR610K S2FR205*2 470uF/250V*2C1R1 10K控制电路+15V
图4-10 线路原理图
(3)控制与驱动电路:控制电路以SG3525为核心构成,SG3525为美国Silicon General公司生产的专用PWM控制集成电路,其内部电路结构及各引脚功能如图4-11所示,它采用恒频脉宽调制控制方案,其内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。调节Ur的大小,在A、B两端可输出两个幅度相等、频率相等、相位相互错开180度、占空比可调的矩形波(即PWM信号)。它适用于各开关电源、斩波器的控制。详细的工作原理与性能指标可参阅相关的资料。
图4-11 SG3525芯片的内部结构与所需的外部元件
四、实验内容
(1)控制与驱动电路的测试 (2)主电路开环特性的测试 (3)主电路闭环特性测试 五、思考题
(1)开关稳压电源的工作原理是什么?有哪些电路结构形式及主要元器件?
(2)利用闭环控制达到稳压的原理是什么?
(3)半桥型开关稳压电源与常用的由三端稳压块构成的稳压电源相比,有那些特点?
(4)全桥型开关稳压电源的电路结构又该如何?与半桥型相比将有哪些特点?
(5)为什么在主电路工作时,不能用示波器的双踪探头同时对两只管子栅源之间的波形进行观测?
六、实验方法
(1)控制与驱动电路的测试
①开启DJK19控制电路电源开关;
②将SG3525的第一脚与第九脚短接(接通开关K),使系统处于开环状态,并将10 脚接地(将10脚与12脚相接);
③SG3525各引出脚信号的观测:调节PWM脉宽调节电位器,用示波器观测各测试点信号的变化规律,然后调定在一个较典型的位置上,记录各测试点的波形参数(包括波形类型、幅度A、频率f和脉宽t),并填入下表。 SG3525引脚 4 5 11(A) 14(B) 13 16
波形类型 幅值A (V) 频率f (Hz) 占空比(%) 脉宽t(ms) ④用双踪示波器的两个探头同时观测11脚和14脚的输出波形,调节PWM脉宽调节电位器,观测两路输出的PWM信号,找出占空比随Ur的变化规律,并测量两路PWM信号之间的“死区”时间tdead= 。
⑤用双踪示波器观测加到两只MOSFET管栅源之间的波形,记录之,并与A、B两端的波形作比较;同时判断加到两MOSFET管栅源之间的控制信号极性(即变压器同名端的接法)是否正确。
⑦先断开10脚与12脚的连线, 然后用导线连接16脚与10脚,观测A、B两端的输出信号的变化,该有何结论?
(2)主电路开环特性的测试
①按面板上主电路的要求在逆变输出端装入220V15W的白炽灯,在直流输出两端接入负载电阻,并将主电路接至实验装置50Hz某一相交流可调电压(0-250V)的输出端。
②逐渐将输入电压Ui从0调到约50V左右,使白炽灯有一定的亮度。调节占空比,用示波器的一个探头分别观测两只MOSFET管的栅源电压和直流输出电压的波形。用双踪示波器的两个探头同时观测变压器副边及两个二极管两端的波形,改变脉宽,观察这些波形的变化规律,并记录:
Ur (V) 占空比(%) UT2 (V) 1.0 1.3 1.5 1.7 2.0 2.3 2.6 3.0 3.2
UO (V) ③将输入交流电压Ui调到200V,用示波器的一个探头分别观测逆变桥的输出变压器副边和直流输出的波形,记录波形参数及直流输出电压U0中的纹波;
Ur (V) 占空比(%) UT2 (V) UO (V) 纹波(V) ④在直流电压输出侧接入直流电压表和电流表。在Ui=200 V时,在一定的脉宽下,作电源的负载特性测试,即调节可变电阻负载R,测定直流电源输出端的伏安特性:Uo=f(I);
令Ur= V (参考值为2.2 V) R (Ω) 占空比(%) Uo (V) I (A) ⑤在一定的脉宽下,保持负载不变,使输入电压Ui在200V左右调节,测量直流输出电压Uo,测定电源电压变化对输出的影响。
Ui(V) 100 120 140 160 180 200 220 240 250
占空比(%) Uo (V) I (A) ⑥上述各实验步骤完毕后,将输入电压Ui调回零位。 (3)主电路闭环特性测试 ①准备工作:
A、断开控制与驱动电路中的开关K;
B、将主电路的反馈信号Uf接至控制电路的Uf端,使系统处于闭环控制状态。
②重复主电路开环特性测试的各实验步骤。 七、实验报告
(1)整理实验数据和记录的波形;
(2)分析开环与闭环时负载变化对直流电源输出电压的影响; (3)分析开环与闭环时电源电压变化对直流电源输出电压的影响; (4)对半桥型开关稳压电源性能研究的总结与体会。 八、注意事项
双踪示波器有两个探头,可同时测量两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将示波器两个探头的地线接于此处,两个探头的信号端接两个被测信号。
实验一 锯齿波同步移相触发电路实验 ........................................ 159 实验二 单相桥式全控整流电路实验 ............................................ 164 实验三 直流斩波电路实验 ............................................................ 169 实验四 单相交流调压电路实验 ...................... 错误!未定义书签。
实验一 锯齿波同步移相触发电路实验
一、实验目的
(1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。
二、实验所需挂件及附件
序号 1 型 号 DJK01 电源控制屏 备 注 该控制屏包含“三相电源输出”等几个模块。 2 DJK03 晶闸管触发电路 该挂件包含“锯齿波同步移相触发电路”等模块。 3 双踪示波器 自备 三、实验线路及原理
锯齿波同步移相触发电路的原理图如图1-1所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理
可参见电力
图1-1锯齿波同步移相触发电路的原理图
电子技术教材中的相关内容。
四、实验内容
(1)锯齿波同步移相触发电路的调试。
(2)锯齿波同步移相触发电路各点波形的观察和分析。
五、预习要求
(1)阅读电力电子技术教材中有关锯齿波同步移相触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。
(2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。
六、实验方法
(1) 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03的正常工作电源电压为220V10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03的“外接220V”端,按下“启动”按钮,打开DJK03电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。
④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围
将控制电压Uct调至零(将电位器RP2顺时针旋到底),用示波器观察同步电压信号和“6”点U6的波形,调节偏移电压Ub(即调RP3电位器),使α=170°,其波形如图1-2所示。
图1-2锯齿波同步移相触发电路
(3)调节Uct(即电位器RP2)使α=60°,观察并记录U1~U6及输出 “G、K”脉冲电压的波形,标出其幅值与宽度,并记录在下表中(可在示波器上直接读出,读数时应将示波器的“V/DIV”和“t/DIV”微调旋钮旋到校准位置)。
幅值(V) 宽度(ms)
U1 U2 U3 U4 U5 U6 七、实验报告
(1)整理、描绘实验中记录的各点波形,并标出其幅值和宽度。
(2)总结锯齿波同步移相触发电路移相范围的调试方法,如果要求在Uct=0的条件下,使α=90°,如何调整?
(3)讨论、分析实验中出现的各种现象。 U1波形
U2波形
U3波形
V ms
V ms
V
ms
U4波形
U5波形
U6波形
V ms
V ms
V
ms
实验二 单相桥式全控整流电路实验
一、实验目的
(1)加深理解单相桥式全控整流电路的工作原理。 (2)研究单相桥式变流电路整流的全过程。
二、实验所需挂件及附件
序号 1 型 号 DJK01 电源控制屏 备 注 该控制屏包含“三相电源输出”,“励磁电源”等几个模块。 2 DJK02 晶闸管主电路 该挂件包含“晶闸管”以及“电感”等几个模块。 3 DJK03 晶闸管触发电路 该挂件包含“锯齿波同步触发电路”模块。 4 DJK10 变压器实验 该挂件包含“逆变变压器”以及“三相不控整流” 等模块。
5 6 7 D42 三相可调电阻 双踪示波器 万用表 自备 自备 三、实验线路及原理
图2-1为单相桥式整流带电阻电感性负载,其输出负载R用D42三相可调电阻器,将两个900Ω接成并联形式,电抗Ld用DJK02面板上的700mH,直流电压、电流表均在DJK02面板上。触发电路采用DJK03组件挂箱上的“锯齿波同步移相触发电路Ⅰ”和“Ⅱ”。
图2-1 单相桥式整流实验原理图
四、实验内容
单相桥式全控整流电路带电阻电感负载。
五、预习要求
阅读电力电子技术教材中有关单相桥式全控整流电路的有关内容。
六、实验方法
(1)触发电路的调试
将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线
电压为200V,用两根导线将200V交流电压接到DJK03的“外接220V”端,按下“启动”按钮,打开DJK03电源开关,用示波器观察锯齿波同步触发电路各观察孔的电压波形。
将控制电压Uct调至零(将电位器RP2顺时针旋到底),观察同步电压信号和“6”点U6的波形,调节偏移电压Ub(即调RP3电位器),使α=180°。
将锯齿波触发电路的输出脉冲端分别接至全控桥中相应晶闸管的门极和阴极,注意不要把相序接反了,否则无法进行整流和逆变。将DJKO2上的正桥和反桥触发脉冲开关都打到“断”的位置,并使Ulf和Ulr悬空,确保晶闸管不被误触发。
(2)单相桥式全控整流
按图2-1接线,将电阻器放在最大阻值处,按下“启动”按钮,保持Ub偏移电压不变(即RP3固定),逐渐增加Uct(调节RP2),在α=0°、30°、60°、90°、120°时,用示波器观察、记录整流电压Ud和晶闸管两端电压Uvt的波形,并记录电源电压U2和负载电压Ud的数值于下表中。
α 36 90° 120° 1500° 0° U2 ° Ud(记录值)
Ud(计算值) 计算公式:Ud=O.9U2(1+cosα)/2
八、实验报告
画出α=30°、60°、90°、120°时Ud和UVT的波形。
九、注意事项
(1) 参照实验四的注意事项
(2)在本实验中,触发脉冲是从外部接入DJKO2面板上晶闸管的门极 和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的 开关拨向“断”的位置,并将Ulf及Ulr悬空,避免误触发。 Ud a=30 0 U VT a=30 0 Ud a=60 0 U VT a=60 0
tttt
Ud a=120 0 U VT
a=120 0 Ud
a=1500
ttt
实验三 直流斩波电路实验
一、实验目的
(1)熟悉直流斩波电路的工作原理。
(2)熟悉各种直流斩波电路的组成及其工作特点。
(3)了解PWM控制与驱动电路的原理及其常用的集成芯片。
二、实验所需挂件及附件
序号
型 号 备 注
1 2 3 4 5 6 DJK01 电源控制屏 DJK09 单相调压与可调负载 DJK20 直流斩波电路 D42 三相可调电阻 慢扫描示波器 万用表 该控制屏包含“三相电源输出”,“励磁电源”等几个模块。 自备 自备 三、实验线路及原理
1、主电路
①、降压斩波电路(Buck Chopper)
降压斩波电路(Buck Chopper)的原理图及工作波形如图3-1所示。图中V为全控型器件,选用IGBT。D为续流二极管。由图3-1b中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向负载供电,UD=Ui。当V处于断态时,负载电流经二极管D续流,电压UD近似为零,至一个周期T结束,再驱动V导通,重复上一周期的过程。负载电压的平均值为:
UotontUionUiaUitontoffT
式中ton为V处于通态的时间,toff为V处于断态的时间,T为开关周期,α为导通占空比,简称占空比或导通比(α=ton/T)。由此可知,输出到负载的电压平均值UO最大为Ui,若减小占空比α,则UO随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。
+UiCE+ L1UD -C1+RUo-VGD-
(a)电路图
UGEtontofft
②、升压斩波电路(Boost Chopper)
升压斩波电路(Boost Chopper)的原理图及工作波形如图3-2所示。电路也使用一个全控型器件V。由图3-25b中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向电感L1充电,充电电流基本恒定为I1,同时电容C1上的电压向负载供电,因C1值很大,基本保持输出电压UO为恒值。设V处于通态的时间为ton,此阶段电感L1上积蓄的能量为UiI1ton。当V处于断态时Ui和L1共同向电容C1充
电,并向负载提供能量。设V处于断态的时间为toff,则在此期间电感L1释放的能量为(UO-Ui) I1ton。当电路工作于稳态时,一个周期T内电感L1积蓄的能量与释放的能量相等,即:
UiI1ton=(UO-Ui) I1toff
UotontofftoffUiTUitoff
上式中的T/toff≥1,输出电压高于电源电压,故称该电路为升压斩波电路。
+UiI1L1GC-UDV+DC1+RUo--E(a)电路图
UGE
2、控制与驱动电路
控制电路以SG3525为核心构成,SG3525为美国Silicon General公司生产的专用PWM控制集成电路,其内部电路结构及各引脚功能如图3-7所示,它采用恒频脉宽调制控制方案,内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。调节Ur的大小,在A、B两端可输出两个幅度相等、频率相等、相位相差、占空比可调的矩形波(即PWM信号)。它适用于各开关电源、斩波器的控制。详细的工作原理与性能指标可参阅相关的资料。
图3-7驱动电路
四、实验内容
(1)控制与驱动电路的测试 (2)两种直流斩波器的测试
五、思考题
(1)直流斩波电路的工作原理是什么?有哪些结构形式和主要元器件? (2)为什么在主电路工作时不能用示波器的双踪探头同时对两处波形进行观测?
六、实验方法
1、控制与驱动电路的测试
(1)启动实验装置电源,开启DJK20控制电路电源开关。
(2)调节PWM脉宽调节电位器改变Ur,用双踪示波器分别观测SG3525的第11脚与第14脚的波形,观测输出PWM信号的变化情况,并填入下表。
Ur(V) 11(A)占空比(%) 14(B)占空比(%) PWM占空比(%) 1.4 1.6 1.8 2.0 2.2 2.4 2.5 (3)用示波器分别观测A、B和PWM信号的波形,记录其波形、频率和幅值,
并填入下表。
观测点 波形类型 幅值A (V) 频率f (Hz) A(11脚) B(14脚) PWM (4)用双踪示波器的两个探头同时观测11脚和14脚的输出波形,调节PWM脉宽调节电位器,观测两路输出的PWM信号,测出两路信号的相位差,并测出两路PWM信号之间最小的“死区”时间。
2、直流斩波器的测试(使用一个探头观测波形)
斩波电路的输入直流电压Ui由三相调压器输出的单相交流电经DJK20挂箱上的单相桥式整流及电容滤波后得到。接通交流电源,观测Ui波形,记录其平均值(注:本装置限定直流输出最大值为50V,输入交流电压的大小由调压器调节输出)。
按下列实验步骤依次对两种典型的直流斩波电路进行测试。
(1)切断电源,根据DJK20上的主电路图,利用面板上的元器件连接好相应的斩波实验线路,并接上电阻负载,负载电流最大值限制在200mA以内。将控制与驱动电路的输出“V-G”、“V-E”分别接至V的G和E端。
(2)检查接线正确后,接通主电路和控制电路的电源。
(3)用示波器观测PWM信号的波形、UGE的电压波形、UCE的电压波形及输出电压Uo和二极管两端电压UD的波形,注意各波形间的相位关系。
(4)调节PWM脉宽调节电位器改变Ur,观测在不同占空比(α)时,记录Ui、UO
和α的数值于下表中,从而画出UO=f(α)的关系曲线。
降压斩波数据 Ur(V) 占空比α(%)
1.4 1.6 1.8 2.0 2.2 2.4 2.5
Ui(V) Uo(V)
升压斩波数据
Ur(V) 占空比α(%) Ui(V) Uo(V) 1.4 1.6 1.8 2.0 2.2 2.4 2.5 七、实验报告
(1)分析图3-7中产生PWM信号的工作原理。
(2)整理各组实验数据绘制各直流斩波电路的Ui/UO-α曲线,并作比较与分析。 (3)讨论、分析实验中出现的各种现象。
八、注意事项
(1)在主电路通电后,不能用示波器的两个探头同时观测主电路元器件之间的波形,否则会造成短路。
(2)用示波器两探头同时观测两处波形时,要注意共地问题,否则会造成短路,在观测高压时应衰减10倍,在做直流斩波器测试实验时,最好使用一个探头。
因篇幅问题不能全部显示,请点此查看更多更全内容