首 页 行业热点 新车 试驾评测 养车用车 车型库
当前位置:首页电吸附技术去除重金属三价铬离子的研究2

电吸附技术去除重金属三价铬离子的研究2

2022-05-31 来源:好土汽车网
导读 电吸附技术去除重金属三价铬离子的研究2
 2.2三价铬吸附动力学

三价铬的吸附动力学曲线见图4。由图4可知,不同电压下对铬吸附动力学曲线基本可以分为两个阶段:(1)快速吸附阶段,在0~90min期间,Cr3+被快速吸附到电极内部的孔道中,到90min时,吸附量基本达到了饱和吸附量的90%。(2)慢速吸附阶段,随着电极孔道内逐渐被Cr3+充满,电极内部吸附电位减少,则吸附速率变得比较缓慢。快速吸附阶段的吸附量基本决定了饱和吸附量的大小。

由图4可知,Cr3+的物理吸附的饱和吸附量可以达到3.07mg/g,电吸附是在物理吸附饱和的基础上进行的,Cr3+物理吸附饱和后,加上0.6V的电压依然能继续吸附3.43mg/g,电压升至1.2V时,电吸附量达到7.58mg/g,1.2V的电吸附容量为0.6V的2.21倍,由此可见电吸附能够极大的提高电极吸附能力。

Cr3+的吸附动力学曲线,分别用一级吸附速率方程和二级吸附速率方程进行线性回归,回归的曲线分别见图5和图6,根据吸附动力学方程所求的动力学参数见表1。

由图5、图6及表1可知,从拟合的饱和吸附量来看,物理吸附二级动力学拟合的饱和吸附量接近试验的饱和吸附量;而对电吸附而言,电吸附一级动力学拟合的饱和吸附量接近试验的饱和吸附量。同时,从相关性系数来看,物理吸附的二级动力学相关系数高于一级动力学的相关系数;而对于电吸附来讲,则是相反的。因此,表明Cr3+的物理吸附是借助电极表面的官能团而被吸附,电吸附则是借助电场推动力的作用被吸附的电极表面,即物理吸附和电吸附的机理是存在区别的。 2.3三价铬电吸附/脱附循环

电吸附吸附常规的无机盐离子具有良好的吸附和脱附性能,具有较好的循环性。而电吸附对Cr3+的吸附和脱附性能需要进行验证。试验在1.2V电压下,原溶液Cr3+浓度为520mg/L(10mmol/L),吸附达到饱和后,对电极进行短接,此时Cr3+从电极中脱附出来。循环20个周期后,电吸附容量随周期的变化见图7。

由图7可知,Cr3+的电吸附容量在第1周期时为7.30mg/g,第5周期时电吸附容量为6.87mg/g,下降了5.9%。此后下降速度较慢,到第20周期时,电吸附容量为6.76mg/g,即电吸附容量已经变得平稳。主要原因是在初始的几个周期中,部分Cr3+被吸入到电极深部的微小孔道中,未能脱附出来。随着周期数的增加,进入电极深部且未能脱附的量较少,因此此时电吸附容量已经逐渐保持稳定。 3、结论

(1)在溶液pH值较低时,Cr3+的电吸附受到H+的竞争吸附,所以Cr3+的电吸附合适的pH值为7。

(2)电吸附相对物理吸附可以提高电极的吸附容量,物理吸附对Cr3+的饱和吸附量为3.07mg/g,0.6V电压的电吸附容量为3.43mg/g,电压升至1.2V时,电吸附量达到7.58mg/g,1.2V的电吸附容量为0.6V的2.21倍。Cr3+的物理吸附吸附过程符合二级动力学方程。

(3)Cr3+的循环吸附表明,循环吸附性能良好。仅在前几个周期,少量离子进入内部孔道,难以脱附出,吸附量下降明显;下降趋势随周期数增加逐渐平缓。电吸附由于优良的重复吸附性能,因此在重金属污染治理领域有着广阔的应用前景。

因篇幅问题不能全部显示,请点此查看更多更全内容