初中数学培优辅导讲义
含绝对值一次方程的解法
辅导时间: 姓 名:
|12x|3202[例1]解方程 (1) (2) 3|2x1|x0
解:| 1 – 2x | + 3 – 4 = 0 解:| 2x – 1 | = 3 + x [x ≥ - 3]
| 1 – 2x | = 1 2x – 1 = 3 + x 或 2x – 1 = - (3 + x)
23
1 – 2x = 1或 1 – 2x = - 1 x 1 = 4 或 x 2 =
x 1 = 0 或 x 2 = 1
★当方程中只含有一个绝对值时,可将绝对值看作一个整体来求解,再根据绝对值的定义去掉绝对值符号,最终达到解方程的目的。
解含绝对值方程的总原则是设法去掉绝对值符号,化为一般方程。由绝对值的定义:
a|a|0aa0a0a0
可知,本题解法中,是先设法确定未知数的取值范围,从而得到绝对值中部分的正、负取值,最终达到去绝对值符号的目的。
【小试牛刀】
11|13x|041、| x – 2 | - 2 = 0 2、3 3、4 – 2 | 5 – x | = 3x
1714〖 x 1 = 4,x 2 = 0 〗 〖 x 1 =12,x 2 =12 〗 〖 x 1 = - 6,x 2 =5(舍) 〗
[例2]解方程 | x - | 2x + 1 | | = 3
解:x - | 2x + 1 | = 3 或 x - | 2x + 1 | = - 3
| 2x + 1 | = x – 3 [x ≥ 3] 或 | 2x + 1 | = x + 3 [x ≥ - 3]
2x + 1 = x – 3 或 2x + 1 = - (x – 1) 或 2x + 1 = x + 3 或 2x + 1 = - (x + 3)
24x 1 = - 4 (舍) x 2 = 3(舍) x 3 = 2 x 4 = 3
∴ 原方程的解为 x4 1 = 2 ,x 2 =
3
【小试牛刀】
1、2 + | 3 - | x + 4 | | = 2x
15〖 x(舍),xx 1 =3 2 = 9 (舍), 3 = 3,x 4 =3(舍) 〗
2、| | | x – 1 | - 1 | - 1 | - 1 = 0
〖 x 1 = 4,x 2 = - 2,x 3 = 2,x 4 = 0 〗
[例3]解方程| 3x – 2 | + | x + 1 | = 10
2解:令3x – 2 = 0,x =3;令x + 1 = 0,x = - 1
2① 当x < - 1时, ②当 – 1≤ x <3时 - (3x – 2) – (x + 1) = 10 - (3x – 2) + x + 1 = 10 - 3x + 2 – x – 1 = 10 - 3x + 2 + x + 1 = 10 2③当x ≥3时
3x – 2 + x + 1 = 10
3x + x = 10 + 2 – 1
- 3x – x = 10 – 2 + 1 - 3x + x = 10 – 2 – 1 4x = 11
11- 4x = 9 - 2x = 7 ∴ x =4
97∴ x =4 ∴ x = 2(舍)
119 ∴原方程的解为x 1 =4,x 2 =4
★由于零是正、负的分界点,因此解题中所用的分类方法常被称为“零点”法。在解题时应注意分段后各自求得的解是否在相应的取值范围内,从而确定它是否是原方程真正的解。
【小试牛刀】
1、| x – 4 | - | x + 3 | = 2
12 〗
〖 x =
2、15 + | 2x + 3 | - 2 | 2 – 3x | = 0
112 〗
〖 x 1 = - 2,x 2 =
3、| x – 2 | - 3 | x + 1| = 2x – 9
4〖 x = 3 〗
[思考]
1、已知ab < 0,且| a | = 2,| b | = 7,求 a + b的值
解:∵| a | = 2,∴a = ±2, ∵| b | = 7,∴b = ±7
又 ∵ab < 0, ∴a、b异号
2(7)5∴a + b = 275
答:a + b = - 5 或 a + b = 5
2、已知 | 3x – 2 | + | 2y + 3 | = 0,求 | x + y + 1 |的值
解:∵ | 3x – 2 | + | 2y + 3 | = 0
2x33x20y32 ∴ 2y30 ∴23111||∴| x + y + 1 | = | 32 | = 6 = 6
abcabbcacabc3、已知 abc > 0,求|a||b||c||ab||bc||ac||abc|的值
解:∵abc > 0
∴a、b、c为三正或二负一正
① 当a > 0,b > 0,c > 0时
abcabbcacabc原式 = abcabbcacabc = 1 + 1 + 1 + 1 + 1 + 1 + 1 = 7
② 不访设 a < 0,b < 0,c > 0
abcabbcacabc原式 = abcabbcacabc = - 1 – 1 + 1 + 1 – 1 – 1 + 1 = - 1
4、已知:| a | = a + 1,| x | = 2ax,求 | x – 1 | - | x + 1 | + 2的最小值与最大值
解:∵ | a | = a + 1
∴ a = a + 1 或 a = - (a + 1)
12
∴ 0x = 1 (无解) 或 a =
又 ∵ | x | = 2ax
∴ | x | = - x,∴x ≤ 0
令 x – 1 = 0,x = 1,令 x + 1 = 0,x = - 1
① 当 x ≤ - 1时
| x – 1 | - | x + 1 | + 2 = - (x – 1) + (x + 1) + 2
= - x + 1 + 4 + 1 + 2
= 4
② 当 – 1< x ≤ 0时
| x – 1 | - | x + 1 | + 2 = - (x – 1) – (x + 1) + 2
= - x + 1 – x – 1 + 2
4(x1) = -2x + 2 = 2(x0)
答:| x – 1 | - | x + 1 | + 2的最大值为4,最小值为2
因篇幅问题不能全部显示,请点此查看更多更全内容