发布网友 发布时间:2022-04-21 23:04
共4个回答
热心网友 时间:2022-07-10 01:52
整数是通过给自然数添加一个逆规则延伸出来的数字。从自然数集合N开始,再加上皮亚诺规则,我们只需要额外添加一个加法逆元的定义。非零自然数的加法逆元就是负整数。为了得到整数,我们只需要添加下面两条新的规则。
加法逆元:对于任意一个非零的自然数n,总是存在一个不是自然数的数字-n,使得n+(-n)=0。我们称-n是n的加法逆元,称自然数集合和它们的加法逆元为整数。
逆元唯一性:对于任意的两个整数i和j,当且仅当i是j的加法逆元,j才是i的加法逆元。
整数的含义遵从方向的概念。从基数和序数两个含义上来看,正整数和自然数一模一样。负整数可以让你往另一个方向移动。
如果通过基数的方式来思考,整数可以描述在集合间移动元素。如果你有一个大小为27的集合和另一个大小为29的集合,那么为了让这两个集合的大小一样,可以选择给第一个集合添加两个元素,或者从第二个集合中去除两个元素。
如果添加两个元素给第一个集合,那么是在用正的基数做事情。如果从第二个集合中去除两个元素,那么你是在用负的基数做事情。
扩展资料
正整数的分类:
1、正整数
它是从古代以来人类计数的工具。可以说,从“1头牛,2头牛”或是“5个人,6个人”抽象化成正整数的过程是相当自然的。
2、零
零不仅表示“没有”(“无”),更是表示空位的符号。中国古代用算筹计算数并进行运算时,空位不放算筹,虽无空 位记号,但仍能为位值记数与四则运算创造良好的条件。印度-阿拉伯命数法中的零(zero)来自印度的(Sunya)字,其原意也是“空”或“空白”。
3、负整数
中国最早引进了负数。《九章算术.方程》中论述的“正负数”,就是整数的加减法。减法的需要也促进了负整数的引入。
参考资料来源:百度百科-整数
热心网友 时间:2022-07-10 03:27
整数(integer)就是像-3,-2,-1,0,1,2,3,10等这样的数。整数的全体构成整数集,整数集是一个数环。在整数系中,正整数也叫做自然数。-1、-2、-3、…、-n、…(n为自然数)为负整数。则正整数(自然数)、零与负整数构成整数系。整数不包括小数、分数。
如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。
自然数是从古代以来人类计数的工具。可以说,从“1头牛,2头牛”或是“5个人,6个人”抽象化成自然数的过程是相当自然的。
零不仅表示“没有”(“无”),更是表示空位的符号。中国古代用算筹计算数并进行运算时,空位不放算筹,虽无空位记号,但仍能为位值记数与四则运算创造良好的条件。在珠算中,0用空档表示,即算珠都靠框,表示算盘上没有拨上数。印度阿拉伯数字中的零(zero)来自印度的शून्य)字,其原意也是“空”或“空白”。
中国最早引进了负数。《九章算术.方程》中论述的“正负数”,就是整数的加减法。减法的需要也促进了负整数的引入。减法运算可看作求解方程,如果两个数都是自然数,则所给方程未必有自然数解。为了使它恒有解,就有必要把自然数系扩大为整数系。
整数中,能够被2整除的数,叫做偶数。不能被2整除的数则叫做奇数。偶数也叫做双数。能被一些数整除的数,有这样一些特征:
若一个数的末位是0、2、4、6、8,则这个数能被2整除,即偶数。
若一个数各位上的数的和能被3整除,则这个整数能被3整除。
若一个数的末位是0或5,则这个数能被5整除。
若一个数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
若一个数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。
若一个数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。
若一个数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。
一个数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。
若一个数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除。
整数集合用Z表示,它是德文Zahlen的第一个字母。
希望我能帮助你解疑释惑。
热心网友 时间:2022-07-10 05:18
整数,数字的重要组成本部,人们生活中最常用到的数字。整数分三个部分,为正整数,零,和负整数。
我们以0为界限,将整数分为三大类:
1. 正整数,即大于0的整数如,1,2,3······直到
。
2. 零,既不是正整数,也不是负整数,它是介于正整数和负整数的数。
3. 负整数,即小于0的整数如,-1,-2,-3······直到
。(n为正整数)
注:零和正整数统称自然数。
整数也可分为奇数和偶数两类。
热心网友 时间:2022-07-10 07:26
整数(integer):任意自然数(如1,2,3,4,5)以及它们的负数或0。(整数是表示物体个数的数,0表示有0个物体)整数是人类能够掌握的最基本的数学工具。整数的全体构成整数集,整数集合是一个数环。