发布网友 发布时间:2022-04-22 23:33
共1个回答
热心网友 时间:2023-10-18 20:25
热敏电阻的主要特点是:
1,灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;
2,工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~-55℃;
3,体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;
4,使用方便,电阻值可在0.1~100kΩ间任意选择;
5,易加工成复杂的形状,可大批量生产;
6,稳定性好、过载能力强。
扩展资料:
主要缺点:
1,阻值与温度的关系非线性严重;
2,元件的一致性差,互换性差;
3,元件易老化,稳定性较差;
4,除特殊高温热敏电阻外,绝大多数热敏电阻仅适合0~150℃范围,使用时必须注意。
热敏电阻的主要特点有哪些?
热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻器(PTC)在温度越高时电阻值越大,负温度系数热敏电阻器(NTC)在温度越高时电阻值越低,它们同属于半导体器件。热敏电阻的电阻-温度特性可近似地用下式表示:R=R0exp{B(1/T-1/T0)}:R:温度T(K)时的电阻值、:温度T0、(K)时的电阻值、B:B值、*T(K)=t(ºC)+273.15。实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。此处,若将式1中的B值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。BT=CT2+DT+E,上式中,C、D、E为常数。