首 页 行业热点 新车 试驾评测 养车用车 车型库

圆锥曲线焦点三角形面积公式是什么?

发布网友 发布时间:2022-04-21 00:36

我来回答

1个回答

热心网友 时间:2022-06-16 19:03

圆锥曲线焦点三角形面积公式:S=b²·tan(θ/2)。

立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。

圆锥曲线定理:

即有一以Q为顶点的圆锥(蛋筒),有一平面PI'(你也可以说是饼干)与其相截得到了圆锥曲线,作球与平面PI'及圆锥相切,在曲线为椭圆或双曲线时平面与球有两个切点,抛物线只有一个(或者另一个在无穷远处),则切点为焦点。

又球与圆锥之交为圆,设以此圆所在平面PI与PI'之交为直线d(曲线为圆时d为无穷远线),则d为准线。

图只画了椭圆,证明对抛物线双曲线都适用,即证,任一个切点为焦点,d为准线。

证:假设P为曲线上一点,联线PQ交圆O于E。设平面PI′与PI的交角为a,圆锥的母线(如PQ)与平面PI的交角为b。设P到平面PI 的垂足为H,H到直线d的垂足为R,则PR为P到d的垂线(三垂线定理),而∠PRH=a。又PE=PF,因为两者同为圆球之切线。如此则PR sina=PH=PE sinb=PF sinb。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com