发布网友 发布时间:2022-03-29 21:23
共4个回答
懂视网 时间:2022-03-30 01:44
二面角的定义是从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
平面内的一条直线,把这个平面分为两部分,每一部分都叫作半平面。从一条直线出发的两个半平面所组成的图形叫作二面角。这条直线叫作二面角的棱,这两个半平面叫作二面角的面。二面角的大小,可以用它的平面角来度量,二面角的平面角是几度,就说这个二面角是几度。 二面角也可以看作是从一条直线出发的一个半平面绕着这条直线旋转,它的最初位置和最终位置组成的图形。
二面角的平面角的大小,与其顶点在棱上的位置无关。如果两个二面角能够完全重合,则说它们是相等的.如果两个二面角的平面角相等,那么这两个二面角相等。反之,相等二面角的平面角相等。
二面角的性质为:同一二面角的任意两个平面角相等,较大二面角的平面角较大。两个二面角的和或差所对应的平面角,是原来两个二面角所对应的平面角的和或差。二面角可以平分,且平分面是唯一的。对棱二面角相等。
热心网友 时间:2022-03-29 22:52
1、定义法 :在棱上取一点A,然后在两个平面内分别作过棱上A点的垂线。有时也可以在两个平面内分别作棱的垂线,再过其中的一个垂足作另一条垂线的平行线。
2、垂面法 :作与棱垂直的平面,则垂面与二面角两个面的交线所成的角就是二面角的平面角
3、面积射影定理:二面角的余弦值等于某一个半平面在另一个半平面的射影的面积和该平面自己本身的面积的比值。即公式cosθ=S'/S(S'为射影面积,S为斜面面积)。运用这一方法的关键是从图中找出斜面多边形和它在有关平面上的射影,而且它们的面积容易求得。
4、三垂线定理及其逆定理法:先找到一个平面的垂线,再过垂足作棱的垂线,连接两个垂足即得二面角的平面角。
5、向量法:分别作出两个半平面的法向量,由向量夹角公式求得。二面角就是该夹角或其补角。
扩展资料
平面内的一条直线,把这个平面分为两部分,每一部分都叫作半平面。从一条直线出发的两个半平面所组成的图形叫作二面角。
这条直线叫作二面角的棱,这两个半平面叫作二面角的面。二面角的大小,可以用它的平面角来度量,二面角的平面角是几度,就说这个二面角是几度。
二面角也可以看作是从一条直线出发的一个半平面绕着这条直线旋转,它的最初位置和最终位置组成的图形。
二面角的平面角的大小,与其顶点在棱上的位置无关。如果两个二面角能够完全重合,则说它们是相等的.如果两个二面角的平面角相等,那么这两个二面角相等。反之,相等二面角的平面角相等。
关于二面角的性质为:
(1)同一二面角的任意两个平面角相等,较大二面角的平面角较大。
(2)两个二面角的和或差所对应的平面角,是原来两个二面角所对应的平面角的和或差。
(3)二面角可以平分,且平分面是唯一的。
(4)对棱二面角相等。
参考资料:百度百科-二面角
热心网友 时间:2022-03-30 00:10
方法很多,提供四种:
1、证明这个角的两边都垂直于两个平面的交线
2、证明两个平面的交线垂直于这个角所在的平面(两条相交直线确定一个平面)
3、证明两个平面分别都垂直于这个角所在的平面
4、证明这个角是两个平面上相交直线(交点一定在面的交点)所成角中最小的角
……
前三种为常用的,第4种平时用到不多,需要函数的思想,竞赛时可能会用到。
热心网友 时间:2022-03-30 01:45
这个问题有点错误的地方,我想出题者的意思应该是怎样证明一个角是二面角的平面角!!方法有很多种,最常用的是,证明这个角的两边都垂直于这两个平面的交线!!