发布网友 发布时间:2022-04-26 10:02
共1个回答
热心网友 时间:2022-06-27 03:23
就是用极限的定义证明极限存在。
函数极限定义:
设函数f(x)在x0处的某一去心邻域内有定义,若存在常数a,对于任意ε>0,总存回在正数答δ,使得当
|x-xo|<δ时,|f(x)-a|<ε成立,那么称a是函数f(x)在x0处的极限。
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。
2、利用恒等变形消去零因子(针对于0/0型)。
3、利用无穷大与无穷小的关系求极限。
4、利用无穷小的性质求极限。
5、利用等价无穷小替换求极限,可以将原式化简计算。
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹*定理的方法求极限。