发布网友 发布时间:2022-04-25 10:29
共3个回答
好二三四 时间:2022-07-25 04:18
代数学基本定理:任何复系数一元n次多项式方程在复数域上至少有一根n大于等于1,由此推出,n次复系数多项式方程在复数域内有且只有n个根,重根按重数计算。代数基本定理在代数乃至整个数学中起着基础作用。
热心网友 时间:2022-07-25 01:26
代数的基本定理:
设K为一交换体. 把K上的向量空间E叫做K上的代数,或叫K-代数,如果赋以从E×E到E中的双线性映射.换言之,赋以集合E由如下三个给定的法则所定义的代数结构:
1、记为加法的合成法则(x,y)↦x+y;
2、记为乘法的第二个合成法则(x,y)↦xy;
3、记为乘法的从K×E到E中的映射(α,x)↦αx,这是一个作用法则。
扩展资料:
代数的组成:
1、初等代数
在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解代数方程的原理为中心问题的初等代数。
初等代数(elementary algebra)是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的代数式的代数运算理论和方法的数学分支学科。
2、高等代数
高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。
参考资料来源:百度百科—代数
热心网友 时间:2022-07-25 02:44
(代数学基本定理)任何复系数一元n次多项式 方程在复数域上至少有一根(n≥1),由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算).
代数基本定理在代数乃至整个数学中起着基础作用。 据说,关于代数学基本定理的证明,现有200多种证法。
参考资料:http://ke.baidu.com/view/466729.htm