发布网友 发布时间:2022-04-24 18:28
共2个回答
热心网友 时间:2023-08-27 15:05
同学你好,这是我在以前写的一篇,你可以参考一下。不过,题目中的“终于”说明以前应该是很讨厌物理,所以你可以写之前自己并不喜欢物理,然后通过一次物理在生活中的应用发现了物理学之美。我的文章仅供参考!
杨振宁在《美和理论物理学》一文中指出:“科学中存在美。”自然之美在诗人、作家笔下展现,让人心旷神怡,而源于自然之美的科学美,特别是物理美范畴体系的简单美、奇异美、真理美、对称美、和谐美、统一美等更让人陶醉。
物理学是一门闪耀着美的光辉的科学,它的美体现在物理学理论的内容和形式上,也体现在物理学研究的过程中。作为以追求宇宙的和谐为目的的科学,物理学家们在探索自然界物质运动的规律时,无论他们所运用的巧妙的思想方法、他们的勤劳和智慧的结晶———简单、和谐的物理理论,还是他们在追求真理的过程中所体现出严谨求实、锲而不舍的科学精神,无不向人们展示科学自身的至美。
美是科学的本性之一,也是进行科学研究的方法。因此,用科学美熏陶学生,使他们在对真、善、美的追求中,产生对大自然和对科学由衷热爱的强烈感情,并随着学习的不断深入使这种感情不断升华,进而成长为一个既有较高的科学素养,又有一定审美能力的和谐发展的健全人才,是贯穿物理教学始终的重要任务。物理学中的美可以从以下几方面展现。
一、简单美
简单美是物理学的重要标志,历代物理学家无不崇尚。牛顿说过:“自然界喜欢简单,而不爱以什么多余的原因以夸耀自己。”的确,尽管我们面前的物理世界看似纷繁复杂,但它们所遵循的规律却是简单的,物理学家则无不力求用简单的语言来描述它,而物理学也在对简单的追求中逐步发展起来,这样的例子在物理学发展史中不胜枚举。
公元2 世纪,古希腊天文学家托勒密建立了“地球中心”的宇宙模型。为了能够说明复杂的天体运动,托勒密不得不在他的模型中增加一系列“均轮”和“本轮”,因而使他的宇宙模型复杂不堪。崇尚简单的天文学家哥白尼认为,天体的运动应当是简单的,托勒密的宇宙模型不符合数学原理,因而是不正确的。他从天体运动的简单性出发,而且更精确、更简洁的解释了天体运动的规律,把人类对天体运动的认识引入了科学的轨道。
爱因斯坦毕生的心血结晶:质能方程E = mc2 ,形式十分简单,但内容极其丰富———用最精练的语言、最少的符号,提示了奥秘无比的自然规律,称得上是叹为观止的简洁美,而方程中出现的自然界极限速度———光速,又在简单之中勾起人们对神秘的无限遐想。
开普勒行星运动第三定律: R3PT2 = 常量,其形式如此简单,太阳系中所有行星的运动都符合这一规律,奇妙的“2”和“3”使一切井然有序,开普勒不愧为“天空立法者”的称号。简单美,这古老的科学美给人以集中、明快感,同时简单性也是一个科学方*的原则。在美国《物理学世界》2002 年9 月刊登了在美国物理学家中作的调查,评出历史上“最美丽的物理实验”,它们绝大多数由科学家完成,采用自制的简单仪器,方法直接,结论清楚。如中学物理教材中伽利略的自由落体实验,牛顿的棱镜分解太阳光、托马斯?杨的双缝干涉实验等都是最少的人用最简单的仪器和设备,发现了最根本、最单纯的科学概念,科学的简单美蕴藏其中。
二、奇异美
日常教学及教材注重物理概念的建立,物理规律的理解和应用,但每一个物理概念的建立,新理论的形成,总包含某种奇异,展现奇异之美,是提高学生创新能力的有效途径。奇异之所以美,首先在于它体现了科学理论中的艺术因素,在本质上是科学审美现象的结晶。单纯的观察、实验事实无论积累了多少,都不能直接地、必然地导出独创性的科学思想,在教材中玻尔氢原子理论中引入了量子概念,由经典物理向外发散,突破连续的概念,神奇的提出量子的设想,从而演进成壮观的量子物理学。
物理学史,既是一部探索物质结构的历史,也是一部捕捉奇异美,发展奇异美的历史。1924 年,德布罗意向巴黎大学科学院提交了一份令人十分惊奇的博士论文,德布罗意从爱因斯坦光的波粒二象性得到启示,用类比的方法,推广到物质实体,德布罗意的导师郎之万把这篇论文推荐给了爱因斯坦,德布罗意实物粒子和光具有对称性,被爱因斯坦所欣赏,物质波(德布罗意波) 的诞生,奇异中体现了科学理论中的艺术因素,本质上是科学审美现象的结晶,是独创性的科学思想。
三、真理美
真理美是科学美的最基本特征。海森堡曾说过:“美是真理的光辉———其意义也可以理解为,探索者最初是借助于这种光辉,借助于它的照耀来认识真理的。”科学的真理性来源于科学的宗旨,科学的宗旨是揭示客观事物的本质属性和发展规律。因此,对“真”的追求就成为历代科学家忘我奋斗的根本动力。由此可见,科学美离不开真,离开了真,美就成了无源之水、无本之木。
综观物理学发展的整个历史,无处不是物理学家孜孜以求探索真理的真实写照。从伽俐略开创性的运用实验与数学相结合的科学研究方法,从而将人类对自然科学的研究带入一个历史性的新纪元开始,人类对物理学的研究就进入了一个不断向真理接近的过程: 牛顿发展了伽俐略的动力学理论,修正了其理论中的错误部分,形成了能够正确描述宏观低速状态下宇宙间物体运动规律的理论;爱因斯坦则以非凡的洞察力发现了牛顿绝对时空理论的不足,进而用全新的时空观建立了更加符合客观实际的狭义相对论和广义相对论等,都是物理学家在探索未知世界的过程中不断向真理靠近的生动体现。正是因为永远不会有所谓的“终极真理”,因此,物理学的理论并不是尽善尽美的,才使得人类的思维能够从微小至10 - 19M 的夸克到庞大至1026M 的宇宙深初遨游。而这种对科学真理的追求,正是真理美的最好体现。
四、对称美
所谓对称,是指一物体或一系统各部分之间比例的平衡与协调,由此能够产生一种简单性和美的愉悦。对称美是人们认识自然过程中产生的一种古老概念,对称的图案在我国新石器时代就出现了。物理世界中存在多种对称形式:作用力与反作用力、正电与负电、电与磁、吸引与排斥、正粒子与反粒子等。物理学理论中所体现出的对称性则从更高层次上揭示了自然界的对称性,与次同时,物理学家们已经把对称性原理作为科学研究的强有力的工具。在物理学理论中,有许多我们所熟知的守恒定律,如能量守恒定律、动量守恒定律、角动量守恒定律、电荷守恒定律等,而这些定律则是物理规律具有多种对称性的必然结果。如能量守恒与时间对称性相联系。角动量守恒与空间对称性相联系等,对称性与守恒定律之间的联系已经成为现代人们探究自然界的基本出发点之一,而这一联系也深刻的揭示了自然界的对称美。
另一方面,自然界的对称性并不是绝对的,在一定条件下还会出现对称性的“破缺”。我们熟知的弱相互作用下宇宙不守恒的原理就是典型的对称性破缺的例子。随着对物质结构研究的不断深入,人们进一步发现其他对称性破缺的事实,由此认识到,对称性的存在是客观事物普遍规律的内在依据,对称性的破缺则是事物表现出多样性的原因。这种对称中不对称的美与不对称中对称的美,实际上是更高层次的对称美。
五、和谐美
中学力学,主要研究牛顿运动定律,牛顿从和谐美的角度吸收了伽俐略对运动的研究成果,得出牛顿第一、第二定律,又从开普勒第三定律出发,总结归纳出物体之间万有引力相互作用的公式: F =Gm1 m2PR2 ,而这正是开普勒的整个“宇宙”和谐运动和有次序结构的原因,并维持其现在图景的基本作用之一,也是伽俐略自由落体定律的依据。
宇宙、地球、分子、原子、核与粒子,就象交响乐团的各种配器,演奏出物质运动的雄浑主旋律;力学、热学、电磁学、原子物理学之间相互渗透,还与其他学科形成了许多交叉学科,其节奏、韵律体现了层次和谐美。
互补和谐美表现为一种立体美、景深美,在物理学中,唯象与唯理思想的交混,图线与公式描述的并用(如匀变速运动公式与其速度图象) ,理论与实验的互动, (光的波粒二象性到托马斯?杨的双缝干涉实验到实物粒子的波粒二象性) 都显示出了互补和谐美。再如,微观粒子的波粒二象性公式: E =hυ不但表现了波动性与粒子性的统一,也表现了二象性的互补,就象一个交响乐团演奏交响乐,单一乐器按乐谱演奏,可能不成曲调,没有美感,当所有乐器被指挥而互补时,就会演奏出浑然一体的主旋律。
六、统一美
爱因斯坦说:“从那些看来与直接可见的真理十分不同的各种复杂现象中认识到它们的统一性,那是一种壮观的感觉。”因此追求科学的统一,用最简洁的理论描述物理世界,是物理学家梦寐以求的。物理学发展的历史,就是一个不断由小的统一走向大的统一的历史。如牛顿力学将地面上物体的运动与天体的运动统一起来,正确的描述了宏观低速条件下物体运动的规律;电、磁、光三者看起来并无必然的联系,但天才的麦克斯韦却把它们完美的统一于他的精美绝伦的电磁场方程中;而爱因斯坦则更将牛顿力学与麦克斯韦的电磁理论统一于他的相对论中。这些成就并没有使物理学家们满足,他们还在寻求统一的道路上奋力进取,在对自然界四种基本作用力的研究中,人们已经在弱电统一理论的研究中取得了重要进步,进一步统一四种相互作用的研究还在深入的进行。
除以上简述之外,物理学发展史中科学家们探索真理时所表现出的坚忍不拔、严谨求实的科学精神也是物理学中美的重要体现。
今天的教育要求培养全面素质的人才,科学经过分化后再综合的趋势要求人才知识技能的综合,要求人才思维的综合,只有以美作为实践的最终目的,作为追求的最高境界,并在教学过程中,不断引导学生发现美、欣赏美、探索美,把对美的追求变为自觉行动,才能造就象达芬奇那样兼有科学与艺术素质的大艺术家,造就象爱因斯坦那样具有优秀艺术素质的大科学家。物理学中蕴藏的美,有待我们进一步发掘、展现,并在美的追求中造就高素质人才。
热心网友 时间:2023-08-27 15:05
上个星期,妈妈给我买了一个小巧玲珑的指南针。
我把指南针转来转去,不明白为什么,它的指针总是指着南面。晚上,爸爸回来,他看见我在摆弄指南针,就问:“遇到什么问题啦?”我说:“爸爸,
为什么指南针总是指着南面呢?”爸爸说:“指南针是我们的祖先发明的,我们祖先知道磁石能够吸铁,并且制成了可以自由移动的指南针。为什么指南针可以指出
方向呢?原来,地球是一个非常大的磁体,它和磁铁一样,也有两个极,一个叫地磁北极,一个叫地磁南极。因为指南针是一个磁体,并且可以移动,而磁铁是同性
相排,异性相吸,所以地球上的指南针就总是一头朝着地磁北极,一头朝着地磁南极。”“噢,原来是这么回事啊,太有趣了!”我说。
爸爸还告诉我,指南针还是我国古代的四大发明之一,最早的指南针称为罗盘。我问爸爸:“那么,这个指南针怎么用呢?”爸爸说:“把它放平,之后
指针会受到地磁影响而旋转,等它停下来的时候,其中一头指的是南方,另外一头指的是北方。指南针主要是在方向不明的时候,用来分辨方向的,但某些地磁不稳
定的地方是不能使用指南针的,比如沙漠中和某些峡谷中。”
轮船在大海上航行,飞机在天上飞行,都需要指南针指明方向;我们到郊外旅行时,指南针也会给我们带来很大的帮助……指南针真是我们的好帮手!