发布网友 发布时间:2022-04-24 09:59
共1个回答
热心网友 时间:2023-04-26 05:26
(1)定义法:根据增函数,减函数的定义按照“取值—做差—变形—判断符号—下结论”进行判断
(2)图像法:就是画出函数的图像,根据图像的上升或下降,判断函数的单调性
(2)直接法:就是对于我们所熟悉的函数如一次函数,二次函数,反比例函数等
直接写出他们的单调区间
下面给你做个解题的示范吧
已知f(x)=-3x
1
求他在R上的单调性
解:设x1,x2∈R
且x1<x2
f:(x1)-f(x2)=(-3x2
1)-(-3x1
1)
=3(x1-x2)
∵x1<x2
∴x1-x2<0
f(x2)<f(x1)
∴该函数在R上为减函数
好了,这就是最通行的确定单调性和区间地方法
要确定单调区间就要依题而论了
1.
带绝对值的
例
y=|x
3|
|x-3|
当X=3或-3时
绝对值分别为0
所以就有3个区间
分别是(-∞,-3]和(-3,3]和(3,
∞)
2.像那些带根号的
在根号下配方
再找取出相应区间
3.再有就是一些很常见的函数
1次函数单调区间是全体实数
2次就要找出对称轴(分成两半的样子)
反比例函数
一般就是(-∞,0)和(0,
∞)