首 页 行业热点 新车 试驾评测 养车用车 车型库

已知f(x)的一个原函数为e^(x^2),求∫xf'(2x)dx 过程加答案

发布网友 发布时间:2024-10-14 22:06

我来回答

2个回答

热心网友 时间:2024-10-14 22:39

f(x)=e^(x^2)的导数=e^(x^2)*2x

∫xf'(2x)dx
=∫ xdf(2x)/2【这个是基本性质】
=(xf(2x)-∫ f(2x)dx)/2
=2x²*e^(4x²)- e^(4x²) /4+C

希望对你有帮助O(∩_∩)O~满意请采纳

热心网友 时间:2024-10-14 22:39

已知f(x)的一个原函数为e^(x^2),
∴f(x)=(e^(x^2))′=2xe^(x^2);
∴f′(x)=2e^(x^2)+4x²e^(x^2);
∴f′(2x)=2e^(4x^2)+16x²e^(4x^2);
∴∫xf'(2x)dx=∫2xe^(4x^2)+16x³e^(4x^2)dx=e^(4x^2)/4+2x²e^(4x^2)-∫e^(4x^2)4xdx
=e^(4x^2)/4+2x²e^(4x^2)-e^(4x^2)/2+C;(C为常数)
=(2x²-1/4)e^(4x^2)+C;(C为常数)

如果本题有什么不明白可以追问,如果满意记得采纳如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢。祝学习进步

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com