首 页 行业资讯 新车 试驾评测 养车用车 车型库

数据分析师需要具备哪些基础知识?

发布网友 发布时间:2022-04-21 15:51

我来回答

6个回答

热心网友 时间:2022-05-02 19:57

成为一名数据分析师所需要具备的技能:

对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。

而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。

对于分析工具,SQL 是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。

数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。

当然其他编程语言也是需要掌握的。要有把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。

对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。

对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。

对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。

数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。

对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。

数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。

对于高级数据分析师,需要开始带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。

热心网友 时间:2022-05-02 21:15

第一方面是数学基础,第二方面是统计学基础,第三方面是计算机基础。要想在数据分析的道路上走得更远,一定要注重数学和统计学的学习。数据分析说到底就是寻找数据背后的规律,而寻找规律就需要具备算法设计能力,所以数学和统计学对于数据分析是非常重要的。

而要想快速成为数据分析师,则可以从计算机知识开始学起,具体点就是从数据分析工具开始学起,然后在学习工具使用的过程中,辅助算法以及行业知识的学习。学习数据分析工具往往从Excel工具开始学起,Excel是目前职场人比较常用的数据分析工具,通常在面对10万条以内的结构化数据时,Excel还是能够胜任的。对于大部分职场人来说,掌握Excel的数据分析功能能够应付大部分常见的数据分析场景。

在掌握Excel之后,接下来就应该进一步学习数据库的相关知识了,可以从关系型数据库开始学起,重点在于Sql语言。掌握数据库之后,数据分析能力会有一个较大幅度的提升,能够分析的数据量也会有明显的提升。如果采用数据库和BI工具进行结合,那么数据分析的结果会更加丰富,同时也会有一个比较直观的呈现界面。

数据分析的最后一步就需要学习编程语言了,目前学习Python语言是个不错的选择,Python语言在大数据分析领域有比较广泛的使用,而且Python语言自身比较简单易学,即使没有编程基础的人也能够学得会。通过Python来采用机器学习的方式实现数据分析是当前比较流行的数据分析方式。

关于数据分析师需要具备哪些基础知识,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

热心网友 时间:2022-05-02 22:50

数据分析师需要具备的基础知识如下:

一、办公软件

1、 熟练使用excel, Access,Visio等MS Office办公软件,可以制作相关的原型; (MS即microsoft微软,MS Office 是微软提供的系列软件,Word, Excel, PowerPoint, Access。

二、 数据分析软件及方法

1、熟练使用各种数理统计、数据分析、数据挖掘工具软件,熟悉各种网站分析软件的应用,如Google Analytics 、百度统计、Omniture等;

2、具备相关数据分析软件的使用经验。

了解数据分析知识,CDA是很不错的,CDA 数据分析师行业标准由国际范围数据科学领域的行业专家、学者及知名企业共 同制定并每年修订更新,确保了标准的公立性、权威性、前沿性。通过 CDA 认证考试者可获得 CDA 数据分析师中英文认证证书,其涉及行业包括互联网、金融、咨询、电信、零售、医疗、旅游等,涉及岗位包括大数据、数据分析、市场、产品、运营、咨询、投资、研发等。

热心网友 时间:2022-05-03 00:41

数据分析师入门的门槛就是工具,包括python、MySQL、ETL数据清洗、可视化等。完成基础的入门之后,就可以看一些商业方面的知识,多锻炼自己的分析思维。
分析思维是数据分析师的灵魂,企业需要的是能解决实际问题的数据分析师,而不是一个取数机。

热心网友 时间:2022-05-03 02:49

优秀的数据分析师需要具备这样一些素质:有扎实的 SQL 基础,熟练使用 Excel,有统计学基础,至少掌握一门数据挖掘语言(R、SAS、Python、SPSS),有良好的沟通和表达能力,做好不断学习的准备,有较强的数据敏感度和逻辑思维能力,深入了解业务,有管理者思维,能站在管理者的角度考虑问题。

热心网友 时间:2022-05-03 07:55

1)具有业务敏感度,反应迅速,能够良好沟通;2)具有数据分析和数据仓库建模的项目实践经验;3)3年及以上数据分析经验,有互联网产品、运营分析经验;4)熟悉R、SAS、SPSS等统计分析软件,熟练运用Python,熟练使用
SQL、Hive等;5)本科或以上学历,数学、统计、计算机、运筹学等相关专业;那么对于正在入门阶段的同学们应该如何正确把握自己的学习方向呢?

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com