发布网友 发布时间:2024-10-22 11:26
共1个回答
热心网友 时间:4分钟前
(1)证明:连AC,设AC∩BD=O,连A1O,OE.
由A1A⊥面ABCD,知BD⊥A1A,又BD⊥AC,
故BD⊥面ACEA1.
由A1E?面ACEA1,得A1E⊥BD.
(2)解:在正△A1BD中,BD⊥A1O,而BD⊥A1E,
又A1O?面A1OE,A1E?平面A1OE,且A1O∩A1E=A1,
故BD⊥面A1OE,于是BD⊥OE,∠A1OE为二面角A1-BD-E的平面角.
正方体ABCD-A1B1C1D1中,设棱长为2a,且E为棱CC1的中点,
由平面几何知识得EO=3a,A1O=6a,A1E=3a,
满足A1E2=A1O2+EO2,故EO⊥C1O.
由EO⊥BD,知EO⊥面A1BD,
故∠EA1O是直线A1E与平面A1BD所成角.
又sin∠EA1O=EOA1E=33,
故直线A1E与平面A1BD所成角的正弦是33.