首 页 行业资讯 新车 试驾评测 养车用车 车型库

椭圆的标准方程

发布网友 发布时间:2022-04-22 04:47

我来回答

3个回答

好二三四 时间:2022-09-06 13:52

当焦点在x轴时,椭圆的标准方程是:x?/a?+y?/b?=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y?/a?+x?/b?=1,(a>b>0);其中a?-c?=b?。

椭圆上任意一点到F1,F2距离的和为2a,F1,F2之间的距离为2c。而公式中的b?=a?-c?。b是为了书写方便设定的参数。

又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx?+ny?=1(m>0,n>0,m≠n)。即标准方程的统一形式。

椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ,y=bsinθ

标准形式的椭圆在(x0,y0)点的切线就是:xx0/a?+yy0/b?=1。椭圆切线的斜率是:-b?x0/a?y0,这个可以通过复杂的代数计算得到。

好二三四 时间:2022-09-08 13:33

椭圆的标准方程共分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0)。

椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。[椭圆是圆锥曲线的一种,即圆锥与平面的截线。椭圆的周长等于特定的正弦曲线在一个周期内的长度。

懂视网 时间:2022-11-22 05:59


1、椭圆的标准方程共分两种情况:当焦点在x轴时,椭圆的标准方程是:x/a+y/b=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y/a+x/b=1,(a>b>0)。2、其中a-c=b,推导:PF1+PF2>F1F2(P为椭圆上的点 F为焦点)。

3、不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。

4、顶点:焦点在X轴时:长轴顶点:(-a,0),(a,0);短轴顶点:(0,b),(0,-b);焦点在Y轴时:长轴顶点:(0,-a),(0,a);短轴顶点:(b,0),(-b,0)。

热心网友 时间:2024-02-15 03:23

椭圆的标准方程共分两种情况:当焦点在x轴时,椭圆的标准方程是:x²/a²+y²/b²=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y²/a²+x²/b²=1,(a>b>0)。

其中a²-c²=b²,推导:PF1+PF2>F1F2(P为椭圆上的点 F为焦点)。

不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。

顶点:焦点在X轴时:长轴顶点:(-a,0),(a,0);短轴顶点:(0,b),(0,-b);焦点在Y轴时:长轴顶点:(0,-a),(0,a);短轴顶点:(b,0),(-b,0)。



扩展资料

椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其内表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)。

离心率范围:0<e<1。离心率越小越接近于圆,越大则椭圆就越扁。

参考资料来源:百度百科-椭圆

参考资料来源:百度百科-椭圆的标准方程

热心网友 时间:2024-02-15 03:23

高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。
  椭圆的标准方程有两种,取决于焦点所在的坐标轴:
  1)焦点在x轴时,标准方程为:x^2/a^2+y^2/b^2=1
(a>b>0)
  2)焦点在y轴时,标准方程为:x^2/b^2+y^2/a^2=1
(a>b>0)
  其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长.短半轴的关系:b^2=a^2-c^2
,准线方程是x=a^2/c和x=-a^2/c
  又及:如果中心在原点,但焦点的位置不明确在x轴或y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。既标准方程的统一形式。
  椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ

y=bsinθ
  标准形式的椭圆在x0,y0点的切线就是

xx0/a^2+yy0/b^2=1

热心网友 时间:2024-02-15 03:24

椭圆的标准方程如图所示

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com